
www.manaraa.com

www.manaraa.com

www.manaraa.com

PERFORMANCE EVALUATION OF BIG DATA PLACEMENT STRUCTURES IN

MAPREDUCE-BASED DATA WAREHOUSE SYSTEMS

A Thesis

Presented to

The Faculty of the College of Graduate Studies

Lamar University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Mohammad Rakibul Hasan

May 2016

www.manaraa.com

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

All rights reserved.

This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

ProQuest 10146962

Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author.

ProQuest Number: 10146962

www.manaraa.com

PERFORMANCE EVALUATION OF BIG DATA PLACEMENT STRUCTURES IN

MAPREDUCE-BASED DATA WAREHOUSE SYSTEMS

MOHAMMAD RAKIBUL HASAN

Approved:

Kami Makki
Supervising Professor

Stefan Andrei
Committee Member

Jiangjiang (Jane) Liu
Committee Member

Stefan Andrei
Chair, Department of Computer Science

Joe Nordgren
Interim Dean, College of Arts and Science

William E. Harn
Dean, College of Graduate Studies

www.manaraa.com

© 2016 by Mohammad Rakibul Hasan

No part of this work can be reproduced without permission except as indicated by the

“Fair Use” clause of the copyright law. Passages, images or ideas taken from this work

must be properly credited in any written or published materials.

www.manaraa.com

ABSTRACT

PERFORMANCE EVALUATION OF BIG DATA PLACEMENT STRUCTURES IN

MAPREDUCE-BASED DATA WAREHOUSE SYSTEMS

by

Mohammad Rakibul Hasan

 The size of data sets is growing rapidly, which requires fundamentally innovative

techniques and technology to capture, store, distribute, and process promptly and cost

effectively. Hadoop software framework with high-performance execution engines

(MapReduce) is capable of processing large data sets across clusters that provide scalable

and fault-tolerant capability on distributed systems. MapReduce-based warehouse system

with data storage format is very useful for data summarization and query analysis. The

warehouse system can contain millions of row column value and therefore, data

placement structure plays a significant role that can influence the warehouse

performance. In this research, we examined the performances of Hive's data file formats,

the RCFile and ORCFile on top of Hadoop. For this experiment, we design and

implement a distributed cluster by three nodes master-slave architecture, where we store

and organize the data according to the above files’ format structure. We investigate the

file format efficiency in terms of data loading, data storage and query processing using

MapReduce. The experimental results can lead to choosing the perfect and useful file

format for a data warehouse system for Big Data processing

www.manaraa.com

iii

ACKNOWLEDGEMENTS

 I would like to express my heartfelt gratitude to my thesis advisor Dr. S. Kami

Makki for coming up with this topic and steering me towards my final objective. I also

want to show my appreciation to Dr. Stefan Andrei and Dr. Jiangjiang (Jane) Liu, the

other members of the committee. I thank my parents, my wife Moushumy Khatun, my

undergraduate thesis supervisor Mohammad Shamsul Arefin, and my friend P.M

Mahmudul Hasan for constantly supporting and motivating me with their best wishes.

Finally, I would like to thank the Almighty Allah for helping me to believe in myself and

giving me the courage to complete my work.

www.manaraa.com

iv

Table of Contents

List of Tables .. vii

List of Figures .. viii

Chapter Page

1. Introduction ..1

1.1 Big Data Overview ..1

1.2 Organizations ..5

2. Big Data Opportunity and Challenges ..6

2.1 Big Data Opportunity ..6

2.2 Big Data Challenges ...7

 2.2.1 Big Data Processing Pipeline Phases..9

 2.2.1.1 Data Acquisition and Recording..9

 2.2.1.2 Information Extraction and Cleaning...................................9

 2.2.1.3 Data Integration, Aggregation and Representation............10

 2.2.1.4 Query Processing, Data Modeling and Analysis...............10

 2.2.1.5 Interpretation..11

 2.2.2 Challenging Task of Data Processing...12

 2.2.2.1 Heterogeneity and Incompleteness....................................12

 2.2.2.2 Scale...12

 2.2.2.3 Timeliness..13

 2.2.2.4 Privacy...14

www.manaraa.com

v

 2.2.2.5 Human Collaboration...14

3. Hadoop ..16

3.1 Hadoop Overview ...16

3.2 Hadoop Architecture ..16

3.3 MapReduce ..18

 3.4 Hadoop Distributed File System (HDFS)...19

 3.4.1 HDFS Architecture...19

 3.4.1.1 NameNode...19

 3.4.1.2 DataNode...21

 3.4.1.3 Data Flow to Read and Write from HDFS........................21

 3.4.1.4 Data Replication..23

3.5 Hadoop Yarn ...24

3.6 Hadoop Common...26

4. Big Data Warehouse ...27

4.1 Hive ..27

4.2 Hive Architecture ...28

4.3 Workflow Between Hive and Hadoop ...29

5. Data Placement Structure. ..31

5.1 Record Columnar File (RCFile)...31

 5.1.1 RCFile Data Architecture...31

 5.1.2 RCFile Data Compression..32

 5.1.3 RCFile Lazy Decompression..33

www.manaraa.com

vi

 5.2 Optimize Record Columnar File (ORCFile)..34

 5.2.1 ORCFile Structure..34

 5.2.2 Data Write and Compression..36

 5.2.3 Data Read, Lazy Decompression and Lazy Decoding......................36

6. Performance Evaluation of RCFile and ORCFile...38

 6.1 Overview...38

 6.2 Experimental Setup...38

 6.3 Performance Analysis..41

 6.3.1 Data Storage Space...41

 6.3.2 Data Loading Time...42

 6.3.3 Query Execution Time...44

 6.4 RCFile and ORCFile with Different Row Group Sizes...................................46

 6.4.1 Data Storage Space...47

 6.4.2 Query Execution Time..48

7. Conclusions and Future Work ..51

References ...53

Appendices ..57

Appendix A Hadoop Single Node Configuration ..58

Appendix B Hadoop Multi-node Configuration ..62

Appendix C Hive Configuration ..66

Appendix D HiveQL and Table Schema ...67

www.manaraa.com

vii

List of Tables

Table Page

Table 1. Information of Data Types and Example of Data set ..40

www.manaraa.com

viii

List of Figures

Figure Page

Figure 1. Big Data definition and characteristics...3

Figure 2. Big Data processing pipeline and challenging task ..8

Figure 3. Hadoop core component module ..17

Figure 4. Data flow and MapReduce architecture view of Big Data processing18

Figure 5. Hadoop distributed file system architecture ...20

Figure 6. Client reading data from HDFS ..22

Figure 7. Client writes data to HDFS...23

Figure 8. Data replication in HDFS block ...24

Figure 9. Architecture view of YARN to run an application ...25

Figure 10. Hive System architecture and components...28

Figure 11. Hive working flow with Hadoop component ...30

Figure 12. RCFile layout structure...32

Figure 13. ORCFile structure ...35

Figure 14. System architecture and network configuration of experiments39

Figure 15. Storage space with compression ..41

Figure 16. Storage space without compression ...42

Figure 17. Data loading time with compression. ...43

www.manaraa.com

ix

Figure 18. Data loading time without compression ..44

Figure 19. Query execution time with compression ..45

Figure 20. Query execution time without compression. ..46

Figure 21. RCFile storage space with different row group sizes.47

Figure 22. ORCFile storage space with different stripe sizes ..48

Figure 23. Query execution times of different data block sizes of RCFile49

Figure 23. Query execution times of different data block sizes of ORCFile 49

www.manaraa.com

Hasan 1

Chapter 1

Introduction

1.1 Big Data Overview

 We are entering in technological advancement era, where every sector is now

generating an unprecedented amount of data. Digitalization of every device and

escalating the number of Internet users help to grow the data exponentially that makes the

traditional data processing technology obsolete. According to ACI in 2012, 2.5 Exabyte's

of data were generated in every day (Gunelius 2014), and the total volume of the data in

the world is doubled every two years (NTTDATA 2015). Statistics show that two billion

people connected to the Internet in 2015, which is 100 times more than 1995 (“Internet

Live User” 2014).

 The Web 2.0 is another important factor where users can collaborate and share

their experiences in online such as blogs, wikis, social networking, web application,

video sharing and all types of web services(Wikipedia 2016b). Also, different sources

such as social media are playing a paramount role in generating these massive data. For

example in every minute Google receives 4 million queries, Facebook users share 2.5

million content, Twitter users tweet nearly 300,000 times, Instagram users post nearly

220,000 new photos, YouTube users upload 72 hours of new video content, Apple users

download nearly 50,000 apps, email users send over 200 million messages and so on

(Gunelius 2014). The stunning growth rate of this enormous amount of data makes the

data big. Simply, Big Data is a large data set with full of complexity. Big Data has

defined by four V's, which are volume, variety, velocity and value (Oracle Corporation

2015).The following characteristics measure the data as a Big Data.

www.manaraa.com

Hasan 2

• Volume: Volume indicates the amount of data which is generated in the system,

where this data has unknown value and low density. The data volume is growing

very fast, for example, can be tens of terabytes to hundreds of Petabytes.

• Velocity: Velocity refers the speed rate at which the data are generating and

evaluating in real time manner to meet the demand and challenges.

• Variety: The massive amount of data is gathering with huge speed, and this data

can be of different types and nature such as structured, semi-structured and

unstructured data. The data sources are also sending changes in real time without

notice, which creates a huge burden for processing and analyzing.

• Value: There are a great insight and intrinsic value in every piece of data.

However, the challenge is to find out the real patterns, making a perfect

assumption with predicting behavior from the huge volume of data, which may

lead the confident decision making for cost reduction and reduced risk.

 Besides this definition of Big Data by four V's there are also some extra

characteristics (SAS 2015) that we can define which are following:

• Veracity: This indicates the quality of capture data, which totally depend on the

veracity of the source data.

• Complexity: When a vast amount of data with a great speed are coming from

multiple sources then it is a real challenge to manage, and it should be linked and

connected to the user so that end users can find their relevant information. Figure

1 shows the definition and nature of Big Data (Corrigan 2012).

www.manaraa.com

Hasan 3

Figure 1. Big Data definition and characteristics.

 Big Data solution requires new architecture, techniques, and algorithms to avoid

excessive operations of the traditional database system. To store, process and integrate

Big Data every company experiences different types of technology, because Big Data

reveals the truth, helps to analysis the plan, increase brand value and product reliability

(Oracle Corporation 2015). There are two leading Big Data technology namely Apache

Hadoop and NoSql database.

 Apache Hadoop and its open source framework are one of the best solutions of

cluster computing for providing scalable and fault tolerant structure of Big Data analysis.

Hive and Pig are two most popular and effective data warehouse system for Facebook

and Yahoo respectively (He et al. 2011). However, these warehouse systems do not

www.manaraa.com

Hasan 4

directly control the storage in the cluster system. The files system of Hadoop for storage

of huge amount of data called Hadoop Distributed File System (HDFS).

 Based on analysis of Facebook Data Infrastructure team, in Hadoop MapReduce

system there are four critical factors that are affecting the data placement structure of Big

Data (He et al. 2011).

1. Fast data loading: Data is generating from everywhere from different users and

different systems. In everyday Facebook, accepts more than 20 Terabytes of data.

Therefore, it is highly required that Facebook data warehouse stores the data,

which effectively reduces the data loading time.

2. Fast Query Processing: Queries can be either in real time web request or offline,

where users submit heavy decision-making queries. Therefore, data placement

structure needs to process these queries with a very high speed to meet the

demand of users’ satisfaction.

3. Highly efficient storage space utilization: To meet the demand for growing users’

activities Big Data requires a highly efficient scalable storage capacity and

computing power.

4. Strong adaptability to highly dynamic workload pattern: Different users analyze

the data for a different purpose by different applications. Therefore, data

placement structure should be highly adaptive to meet the demand for dynamic

data processing instead of fixed workload patterns.

 Hive is a type of data warehouse system that supports a query language named

HiveQL, which makes easy for end users to store and analysis large data set more

intuitively that eventually meets the demand of data placement structure of Big Data. For

www.manaraa.com

Hasan 5

maintaining the data placement structure, Hive uses own file format to store the data set,

which is RCFile and ORCFile. In this research, we conduct a study of performance

analysis between RCFile and ORCFile formats of Hive system.

 The goal of this work to find out the most useful file formats that satisfy the

requirements of big data placement structure which are fast data loading, fast query

processing, highly efficient storage space utilization, and strong adaptability to highly

dynamic workload patterns. We have set up Hadoop cluster system with three nodes and

made a series of experiments with the RCFile and ORCFile formats in terms of data

loading, different query optimization and data storage space on Hive system. The result

will find the efficient file formats for Big Data analysis on distribute system.

1.2 Organizations

 The remainder of this thesis is organized as follows: the next chapter we describe

the opportunity created by Big Data and cover the details of challenges, which we are

facing at the time of processing and analyzing phase. These challenges are divided into

two parts: the first part describes the phases of processing data and the second part

discusses the difficulties of exploiting the data. In Chapter 3 reviews the Hadoop

ecosystem in terms of Big Data solution. In Chapter 4 presents the data warehouse

technology called Hive. In Chapter 5 introduces the RCFile and ORCFile as data storage

structure. In Chapter 6 contains the detail presentation of performance evaluation of

RCFile and ORCFile format in terms of data storage, data loading and query execution,

and finally, Chapter 7 summarizes the results of implementation and future research

work.

www.manaraa.com

Hasan 6

Chapter 2

Big Data Opportunity and Challenges

2.1 Big Data Opportunity

 To grab the opportunity we need to glean information from Big Data. A study

conducted by Bain and Company found that among 400 companies, those who have

adopted Big Data analytics successfully have taken a leadership role in the corporate

world. Scientific research, agriculture, urban planning, economy, energy, astronomy,

healthcare, education, retailing, logistics, and business operations have benefited and

revolutionized by Big Data (Bain.com 2013; Wall 2014).

 Big Data Analytics is a wonder tool and According to the SAS.com magazine; the

companies can get some benefits from Big Data Analytics as below (Davenport 2014):

• It is cost effective.

• It helps the organization to make faster and better decision.

• It provides an innovative way to create new products and services for companies.

 The economic value of Big Data analysis is notable. In 2009, Google contributed

54 billion dollars to US economy for Big Data analysis and processes (Bertino et al.

2011). Another study shows that UK estimated that big Data analysis will be 322 billion

USD dollars industry by 2017 and creates the opportunity for 58000 jobs for the nation

(Brough 2013). Now a day a scientific researcher can find the natural resources by

staying in their lab with the help of advanced sensing network. They can analyze the

high-resolution seismic data which have been collected from the different geographical

location for finding oil and gas resources. The Solan Digital Sky Survey becomes the

significant central resource for an astronomer; its telescopes can collect pictures from the

www.manaraa.com

Hasan 7

sky and therefore, astronomers can find the interesting discoveries from their

astronomical databases.

 Proper Big Data analytics can boost the education sector (Dobbie and Fryer

2013). In New York City 35 charter schools have organized R&D to collect the proper

data to improve school effectiveness. After analysis by different approaches, they can set

up top five policies to improve school standards. Big Data effectively also has been

implemented in election campaigns as well. For example, in 2008 and 2012 in both

election campaign, Barack Obama had successfully used Big Data to control the voting

processes and win the election(Rutledge 2013; Issenberg 2012). Obama campaign did

approximately 50000 short time survey to people in every week to retrieve the voter

information to reveal the preference about their next president. In the biological sector,

scientists are now depositing real-time scientific data in a public database that is

accessible by others scientist. The analysis of this updated data could yield drug

discovery and curation of diseases worldwide.

2.2 Big Data Challenges

 Big Data has a big value, and it is the next leader of innovation and productivity.

The amount of created and stored data is almost unimaginable, and it keeps growing. The

potential insight of it demands a relatively new approach to architecture, tools and

practices. However, before taking the architectural design, the first and foremost task is to

find out and make categories of challenges created by Big Data. The analysis of Big Data

requires multiple phases, each of which introduces unique challenges (Bertino et al.

2011). Figure 2 shows the two-stage architectural view where left part describes the data

www.manaraa.com

Hasan 8

analysis pipeline and the right part is the challenging tasks that Big Data processing

needs.

Figure 2. Big Data processing pipeline and challenging task.

www.manaraa.com

Hasan 9

2.2.1 Big Data Processing Pipeline Phases

2.2.1.1 Data Acquisition and Recording

 Identifying the right data and determining the technique to best use is a major

concern even though we can easily recognize the data generating sources. It is a very

unwise decision to store and reduce the data at the same time because unnecessary data

may need more time as well more space. We need to find out the technology to reduce

the raw data both on-line and off-line while not missing the important information. The

second big challenge of Big Data is to create metadata that helps to analysis the correct

data in proper order. Data provenance is another important factor that identifies the

subsequent processing of data with the origin and fit the data in the analysis pipeline.

2.2.1.2 Information Extraction and Cleaning

 The collected amount of information are not immediately available for analysis,

but it needs to bring out the correct format with correct shape of data since data are

coming from different sources. The data can be structured, semi-structured and

unstructured that all need to fit in a common method for analysis because different types

of method exist for different sources of data. For example, medical reports of patients

that contain structure information from sensors and measurement, and unstructured

information from X-ray images. We need further extraction process to find the disease

information from raw data of medical reports. It is continuing the resolution of technical

challenges in a correct and comprehensive way to make different raw data types more

suitable for analysis.

www.manaraa.com

Hasan 10

2.2.1.3 Data Integration, Aggregation and Representation

 Data integration phase makes available multiple data sources for access where

sources can be virtual like link direction or warehouse-like easy query (Brough 2013).

Big Data are generating at an unprecedented speed from various sources with different

types of structures. It is not enough that this heterogeneity of data just holds and store in

the warehouse system for analysis. Since we know, the data are coming with different

structure so before storing it into the database, we need a good design of data arranging

system that helps for finding the relevant information at analysis time. Big Data analysis

challenges are not only the warehouse problem and finding the techniques to analysis the

information but also making decision automatically with proper design and maintain a

good data structure.

2.2.1.4 Query Processing, Data Modeling and Analysis

 Data Mining and query processing of Big Data are very different from database

management systems. In traditional database systems, data are stored in their relative

field in a structured way, but in Big Data there is no fixed structure and also sources are

different and uncounted. Big Data is noisy, dynamic, heterogeneous and untrustworthy.

Noisy and untrustworthy data are sometimes more powerful than structured data because

data are interconnected through a network which can have the knowledge of missing data

and finally helps to find out hidden and trustworthy relationship and model (Bertino et al.

2011). Data mining helps to improve the quality of noisy data to understand the

semantics and set up of a model for intelligent querying functions. It also helps to

develop a knowledge-base method from interrelated data to make better assumptions.

www.manaraa.com

Hasan 11

Real-time query processing for the content creation web-site will be effective in the

future to decide whether to store or discard it. Query processing technique from the vast

amount of data in certain time is remaining a hectic research problem today.

2.2.1.5 Interpretation

 Interpretation carries the meaningful result and explains the data architecture that

helps to analysis for the decision maker. Without understanding the hidden insight, Big

Data are meaningless. There are many reasons why interpretation is important since

assumptions based on different criteria might be wrong, or the computer systems may

have some bugs or the results are made based on wrong formats (Bertino et al. 2011).

 Interpretation does not refer to bring out the results with nice presentation view,

rather than it can help to make fruitful decisions from multiple phases of results. The

early business sectors were depending only on tabular representations. Modern

companies are not satisfied only with visual representation but also need the support for

user collaboration and all supporting criteria for interpretation.

 There are different kinds of analysis are available that these days companies use

to make a decision for further analysis such as web analysis, mobile analysis, marketing

analysis and predictive analysis (Hoovers 2013). These might be helpful for counting

visitors and their behavior of certain pages, from where they are coming which help to

provide advertise, help business by segmenting account by different criteria such as

geographical location, industry, a size which can give a better idea of similar prospects.

www.manaraa.com

Hasan 12

2.2.2 Challenging Task of Data Processing

2.2.2.1 Heterogeneity and Incompleteness

 The Big Data is mainly machine-generated data, and the big question is how fast

and how much data we are storing in our database. When data are generating by human

factor heterogeneity and incompleteness can effectively handle by users. However, it is in

a different case for machine analysis algorithms, which expect homogeneous data and

need to analysis to convert structural format before going extract information (Bertino et

al. 2011).For example, we can think a medical report for the patient. If we want to store

the disease history information for a patient and it would difficult to find any pattern of

data because there are no predefined information and further it might be different for

every report. Incompleteness is another issue, which can hinder the analysis of Big Data.

Even after removing the heterogeneity there may be still errors due to lack of

information.

2.2.2.2 Scale

 Big Data requires three criteria for scaling, which are data volume, hardware size

and concurrency (Zicari 2011). The size of data is the most challenging issue because we

cannot predict the amount of data is going to be stored in the databases. In the past, faster

processors were used to manage a large volume of growing data sets. Due to power

constraints, the processors are being built with increasing numbers of cores rather than

doubling the clock cycle frequency of processors (Bertino et al. 2011).

www.manaraa.com

Hasan 13

 Furthermore, parallel clusters system can be very effective to handle the

increasing volume of data because the hardware resources are shared processors cores. In

the cloud computing, scaling system plays an important role to integrate the multiple

clusters’ workloads and gives the concurrency support to prevent system. However,

despite discovering many techniques, Big Data scaling is still in challenging tasks, which

demands to rethink the existing designs, builds and data processing components.

2.2.2.3 Timeliness

 Processing large data sets needs longer time. Therefore, effective design of a

system makes processing of these data sets faster. Timeliness is not just only refers to the

velocity of data, it also closely related to acquisition rate or currency of data (Bertino et

al. 2011). We have to make sure that most updated data are stored in the warehouse

despite the modifications and changes the data over time. In the current age, most of the

data are web generated and it is extremely needed that data driven should be in real time

(Harris 2015). For example, credit or debit card companies handle millions of data in

every day, and it is their responsibility to give the full protection of the users that there

are no suspicious activities on the account. If any fraudulent or unauthentic user's

activities have been traced, they should take action immediately about the potential

threats and stop the next transactions. These kinds of operation should be completed in a

very short time and real time (Bertino et al. 2011).

 Sometimes, the real-time decision is very important to meet the specific criteria.

For example, Google map services which inform the users of possible traffic congestions

and therefore immediately calculate the available fastest route. To create a decision for

www.manaraa.com

Hasan 14

such moving objects in real time from millions of data is a big challenge when data are

generated quickly and need a tight response time of availability of users.

2.2.2.4 Privacy

 To keep information safe and secret are a challenging task in the context t of Big

Data. Storing, scaling and providing timely services are good enough until the

information is safe. Personal data with linking multiple data sources are most dangerous

for both technical and sociological problems. For example, location-based services

(Bertino et al. 2011) which are a very popular application of smartphone devices helps

people to find their desired locations despite the user is totally unknown about their

present locations. Hiding users’ identity is not possible, and a culprit can easily infer the

users’ information. For example, an attacker can track the users’ all connections where he

traveled over the time, and it is easy to figure the user's private information such health

issue, religious matter, job information and so on. This era is called Internet explosion

era, where people love to visit and share their information in social networking, and it is

impossible to hide the users’ details (though all information is saved in secured database).

Because all the users’ profiles are visible to everyone and the hacker does no need to

hack the main database to get the desired data.

2. 2. 2.5 Human Collaboration

 Despite all the automation systems, the machine needs human collaboration to

overcome the Big Data analysis successfully. Knowledge based method is necessary for

data preparation or data assembly which depends on data quality and documentations.

Without knowledge-based method, the resulting analysis might be erroneous. Everybody

www.manaraa.com

Hasan 15

should have a different role in solving Big Data analysis such as a computer programmer

able to write code; a data scientist can discover good algorithm and machine finally can

find out hidden patterns (Rockwell 2015). However, these codes, algorithms, and patterns

are meaningless if there are false predictions. For example, In 2015, UK regulator fined

for wrong bill statement and they clarified that it is the software coding errors (Rockwell

2015). These types of mistakes can be handled if there is a co-equal and co-dependent

collaboration of man and computer (Kobielus 2014).

www.manaraa.com

Hasan 16

Chapter 3

Hadoop

3.1 Hadoop Overview

 Hadoop is a Java based open source software framework developed by Apache

Software Foundation, which can store, process, and analyzes a large volume of datasets

in parallel on clusters of computers. Hadoop can scale up easily from a single server to

hundred servers, where each server provides local computation and storage capability.

The Hadoop cluster plays an important role in storing huge amount of data for large

companies around the world. For example, Yahoo has the biggest Hadoop cluster of 4500

nodes that stores 455 Petabytes of data, where Facebook has 2000 nodes with more than

21 Petabytes of data in a single HDFS cluster (Asay 2014; Won 2016; Dhruba Borthakur

2010; JoshBaer 2015).

3.2 Hadoop Architecture

 Hadoop is a software of libraries, not a single module, which provides an

ecosystem, where different parts of Hadoop components have a specific function to do

and integrate with data processing technologies(Hortonworks 2014). The Hadoop library

is also able to detect and handle the hardware failures at the application layer (White

2015; Wikipedia 2016a).Hadoop has four core modules as shown in figure 3

(Tutorialspoint 2015a; Dezyre 2015).

• Hadoop MapReduce: The programming model for parallel processing of

large data sets.

• Hadoop Distributed File System(HDFS): The default reliable and scalable

www.manaraa.com

Hasan 17

file system to store a large volume of data in the clusters.

• Hadoop Yarn: The Framework to adjust the workload capabilities and

dynamic management of job scheduling.

• Hadoop Common Utilities: Contains the collections of common libraries

and utilities that support other components of the Hadoop ecosystem.

Figure 3. Hadoop core component module.

www.manaraa.com

Hasan 18

3.3 MapReduce

 MapReduce is a programming model to process a large volume of datasets in

parallel on clusters of computers (Tutorialspoint 2015b).The MapReduce has two

methods: Map and Reduce. The Map method takes the raw data as input and breaks the

data into numbers of smaller data sets. Each data set in a Map method receives a

key/value pair and produces intermediate key/value pairs, and stores the output of a

temporary storage system for further processing. The Reduce method combines all the

intermediate key/value pairs based on the intermediate key and generates new sets of

output. Besides Map and Reduce methods, shuffling is another process to transfer the

data from Map processes to Reducers. The MapReduce tasks happen in the local disk to

avoid the network congestions, and the results will be sent to the appropriate servers

(White 2015). Figure 4 shows the architecture and data flow of Map--Reduce tasks

(Khan et al. 2014).

Figure 4. Data flow and MapReduce architecture view of Big Data processing.

www.manaraa.com

Hasan 19

3.4 Hadoop Distributed File System (HDFS)

 A file system that handles the storage capacity of the network is called the

distributed file systems. Hadoop introduces its file system named Hadoop Distributed

File System (HDFS). It makes partitions across the number of separate machines, which

provides significant advantages when the storage capacity of the single machine is not

enough to store large datasets (White 2015). The HDFS goals for Big Data processing

are as follow (D Borthakur 2008):

• Detect hardware failure from hundred to thousand of machines and ensures

automatic recovery.

• Provide streaming accesses with high throughput to avoid low latency data access.

• To support write-once-read-many access model. If a file created, written, and

closed need not be changed in HFDS, which is helpful to append to the files when

necessary.

• To allow computation of data, where data is located to minimize the network

congestion and increase the overall throughput performances.

• To facilitate the design of portable hardware and software platforms, which

provides the widespread adoption of large set of applications.

3.4.1 HDFS Architecture

3.4.1.1 NameNode

 The HDFS cluster has master-slave architecture, which introduces master as

NameNode, and slave as the number of DataNodes(White 2015). NameNode controls

the file system namespace and stores the metadata across the clusters. Metadata contains

www.manaraa.com

Hasan 20

the information about where and which DataNode have stored the data files. The data

files are break into multiple pieces of blocks. The size of each block is 128 MB by default

and stores in a set of DataNodes.

 NameNodes are responsible for namespace operation such as opening, closing,

renaming files directories, and mapping blocks to DataNodes(“HDFS Architecture”

2015). It does not control block operation since DataNodes arrange the block whenever

the system starts. Hadoop provides two mechanisms to make a NameNode consistent and

protect it from the single point of failure. The first one is creating backup files of

metadata to multiple file systems, and the other one maintains a secondary NameNode in

a different machine. The secondary NameNode periodically merge the namespace images

and keeps an updated copy in its own spaces. It provides a backup NameNode when

original NameNode fails. Figure 5 shows the architecture of HDFS.

Figure 5. Hadoop distributed file system architecture

www.manaraa.com

Hasan 21

3.4.1.2 DataNode

 A DataNode stores data in different blocks in HDFS and allows read /write

operations by clients (“HDFS Architecture” 2015). It is also responsible for performing

block creation, deletion and replication according to the instructions by NameNode. All

the DataNodes and NameNodes are communicating by heartbeat messages every 3

seconds. A DataNode is considered to be dead if it does not receive a message within 10

seconds. The DataNodes communicate to each other to move, copy, and replicate and

calculate the checksum of the data (Jain 2012).

3.4.1.3 Data Flow to Read and Write from HDFS

 To read the data from HDFS, the client calls the “open ()” method on the

FileSystem object. Then, DistributedFileSystem contacts with the NameNode using

remote method invocation (RPC) to determine the files location. The NameNode

provides DataNode location and FSDataInputstream to help with finding the files inside

the DataNode. If any error occurs while reading, FSDataInputstream finds the nearest

blocks of data. Client closes the connections by “close ()” method on FSDataInputstream

when it finishes the “read” operations. Figure 6 shows the data flow to read data in HDFS

(White 2015).

www.manaraa.com

Hasan 22

Figure 6. Client reading data from HDFS.

 To write the data in HDFS, clients creates a file by write () method to

DistributedFileSystem, which invokes the remote method (RPC) to call the NameNode

for creating new file system's namespace. The NameNode checks the file existences and

the user's permission for creating a record for new files. DFSOutputstream splits data into

packets and includes the queue locations. The DataStreamer asks the NameNode to

allocate new blocks and the list of DataNode for replications. When all the DataNodes

send acknowledge to the NameNode, then replication is complete, and a packet will be

removed from the ack queue. After writing has finished, client calls “close ()” method

and informs the NameNode that the file has already written into the DataNode. Figure 7

shows the steps for writing data into HDFS system (White 2015).

www.manaraa.com

Hasan 23

Figure 7. Client writes data to HDFS.

3.4.1.4 Data Replication

 In HDFS, the size of all blocks is same except the last block and users can define

the size and the number of blocks. The each file is replicated for supporting the fault

tolerance of HDFS. The NameNode is the master for replication of blocks and receives

periodic messages from DataNode to ensure that all blocks are working properly. The

placement of replication is very important to improve the reliability and performance of

write and read bandwidth in HDFS. In each DataNode, the rack id is maintained by

NameNode and the NameNode places replicas in the unique rack to prevent data loss

when entire racks fail. The number of default replication factor is three; the first a

replication put in one local rack, second is it puts on a node in the different remote rack

www.manaraa.com

Hasan 24

and the last it puts on a different node but in the same rank. Figure 8 shows the block

replication of NameNode and DataNode in HDFS.

Figure 8. Data replication in HDFS block.

3.5 Hadoop Yarn

 The Hadoop Yet another Resources Negotiator (YARN) is a cluster resource

management system for job scheduling to improve the MapReduce implementation in

Hadoop. MapReduce is not effective alone to process large data sets, where YARN

initiates multiple MapReduce jobs for one application (Murty 2012).MapReduce, Spark,

Tez are the examples of YARN applications and clusters storage system(HDFS and

HBase) (White 2015).

 YARN consists of ResourceManager, which controls the use of resources across

the cluster and a NodeManager, which takes command from ResourceManager to lunch

and monitor containers. The container provides a set of resources to run an application

www.manaraa.com

Hasan 25

(Memory, CPU and so on). Figure 9 describes the Yarn architecture and the processes to

run an application.

Figure 9. Architecture view of YARN to run an application.

 To start a YARN application in distributed Hadoop clusters, a client has to follow

several steps (Murty 2012). First, a client node needs to contact with ResourceManager

by submitting a YARN application including all jobs specification and request to run an

ApplicationMaster process. ApplicationMaster negotiates with ResourceManager for

resources and monitors the containers for resource utilizations. The ApplicationMaster

contacts with ResourceManager to communicate directly and executes the computation

www.manaraa.com

Hasan 26

within containers. After the application is complete, ApplicationMaster de-resisters with

ResourceManager and shut down to allow the container to be repurposed.

3.6 Hadoop Common

 Hadoop Common has some predefined libraries and utilities, which are useful for

specific data I/O operations (Apache Software Framework 2016). The native Hadoop

library includes various types of components for data integrity, data compression and

checksum computation. For data integrity, Hadoop uses common error detecting code

called CRC-32, which computes the checksum of the input files. For file compression,

Hadoop common provides different compression formats, tools, and algorithms.

Serialization and de-serialization are important for turning the structure object to byte

streams and byte streams back to structure objects. File-based data structures such as

sequence and map files are also common in native libraries for Hadoop (White 2015).

www.manaraa.com

Hasan 27

Chapter 4

Big Data Warehouse

4.1 Hive

 Apache Hive was developed by Facebook infrastructure team to manage the

growing volume of data sets that Facebook produces everyday from its social networking

activities (White 2015). Hive has included in Hadoop ecosystem as a subproject, which

has been used as a data warehouse framework. Hive supports SQL like scripts called

HiveQL, to run a query on a large volume of data sets using MapReduce. Hive maintains

metastore to contain schema and statistics for data exploration, query optimization and

query compilation. In Hive, data are organized in three formats, which are tables,

partitions, and buckets. The tables are much like to the relational databases system.

 The data inside tables are serialized and stored in HDFS directory. Hive provides

built-in serialization, de-serialization and also users' define custom serialize and de-

serialize method. Hive supports all primitive and complex types of data such as bigint,

int, smallint, tiniint, float, double and object. The second format is the partitions, which

divides the data tables into subdirectories, which are defined by data type characteristics.

The last of data format is buckets, which can store data in both partitions and table's

directory that depends on whether the table is partitioned or not (Thusoo, Sarma, and Jain

2010; Tutorialspoint 2015c).

www.manaraa.com

Hasan 28

4.2 Hive Architecture

 Figure 10 shows the system architecture and components of Apache Hive system

(Thusoo, Sarma, and Jain 2010). The Hive component contains different units, which are

the following:

Figure 10. Hive System architecture and components.

• External Interfaces: Hive supports different types of interfaces to initiate the

works between user and HDFS, such as Command Line Interfaces (CLI), Web

Interfaces, and programming interfaces (JDBC, ODBC).

www.manaraa.com

Hasan 29

• Thrift Server: The Hive thrift server supports cross-language services, which

works with clients API to execute query statement. Thrift server works with

common drivers such as JDBC/ODBC driver and also provides a platform to

integrate other applications with Hive.

• Metastore: Metastore helps the Hive to store the system catalog and metadata,

which contains details information about tables, columns, and partitions and so

on. (Thusoo, Sarma, and Jain 2010)

• Driver: Driver maintains sessions and statistics of HiveQL statement, which

moves to Hadoop through Hive.

• Query Compiler: The component that compiles user defined HiveQL into

MapReduce task.

• Execution Engine: Execution engine is responsible for executing the task

produced by compiler and MapReduce, which maintains the dependency order to

communicate with the Hadoop modules.

4.3 Workflow Between Hive and Hadoop

 Figure 11 shows the step by step workflow between Hive and Hadoop

components. In the first step, the interface sends a query to the database driver for

execution. The driver takes the users’ jobs and informs compiler to parse the query

syntax. The compiler sends metadata to the metastore and metastore sends back metadata

to the compiler (Tutorialspoint 2015c). Metastore selects the data storage systems and

compiler checks the necessary requirements to complete the query. The execution

www.manaraa.com

Hasan 30

engines (MapReduce) sends the jobs to NameNode, which assigns DataNode for query

executions. Finally, execution engine gathers all results from DataNodes.

Figure 11. Hive working flow with Hadoop component

www.manaraa.com

Hasan 31

Chapter 5

Data Placement Structure

5.1 Record Columnar File (RCFile)

 RCFile (Record Columnar File) is a data storage format for MapReduce-based

data warehouse systems (HIVE) to organize and store a large volume of relational tables

data in HDFS clusters, which is a combination of multiple features such as data storage

format, data compression and data optimization techniques (Datametica 2014). In this

data storage format, tables are stored first in horizontally, and then vertically to organize

each column independently in clusters. RCFile supports column-wise data compression

technique (lazy decompression) within each row group that helps to avoid unnecessary

column reads during query execution. Furthermore, RCFile allows to select flexible row

group size and arrange the same row data in the same node that increases the

performance of data compression and query execution (He et al. 2011).

5.1.1 RCFile Data Architecture

 In HDFS, all the row group sizes are the same and a table can contain multiple

blocks and organizes data in row group way. A block can have one or multiple row

groups based on the size of row group and the HDFS block size (White 2015). Figure 12

describes and illustrates the RCFile architecture (He et al. 2011).

www.manaraa.com

Hasan 32

Figure 12. RCFile layout structure.

 A row group has three components, which are synch marker, metadata header and

column store. Synch marker is the beginning placement and helps to isolate the two-row

groups in an HDFS block. Metadata stores the information of all row groups, such as how

many row groups are placed, the size of each column and as well as the size of each field

in a column. The last one is column store, which helps to arrange all the fields in the

same column together.

5.1.2 RCFile Data Compression

 In RCFile, metadata header and table data sections are compressed separately.

The metadata header section uses RLE (Run Length Encoding) algorithm to compress as

a whole unit and the data table section compress each column independently (He et al.

2011).

www.manaraa.com

Hasan 33

The RLE can find long run repeated values because all the values in a column are stored

in continuously. RCFile uses GZip algorithm for better compression because it only

compresses data when all columns are sorted. For each column, RCFile supports separate

algorithm to compress data in the table section. RCFile does not support random writing

operation rather than it provides an interface for appending the end of the file. RCFile

maintains a memory column holder for writing data in each column. Before writing data

to the disks, RCFile uses two parameters to control the memory buffer. The first

parameter is to control the number of records, and the second parameter is to control the

size of the memory buffer.

5.1.3 RCFile Lazy Decompression

 In MapReduce framework for each HDFS block, a mapper is worked sequentially

to process each row group. For reading, RCFile does not read the whole file rather than it

reads only metadata and the corresponding columns to avoid the reading of unnecessary

columns in the row group. Then the metadata header and compressed columns are loaded

into the memory for decompression. RCFile uses lazy decompression technique that

remains in memory until the other row groups are processed. Lazy decompression

becomes useful when there is a where condition in a query, because if some row groups

do not satisfy the where condition then those row groups do not need to be decompressed.

For example, consider a table (T) with the following columns (col1, col2, col3, col4,col5,

….) and there is a query such as select col1, col3 from T where col2 = 2. The RCFile

only reads the metadata header in the row group and decompresses only those row groups

www.manaraa.com

Hasan 34

that match the where condition (col2=2) of the above query, not other row groups that do

not match the where condition, which saves time.

5.2 Optimize Record Columnar File (ORCFile)

5.2.1 ORCFile Structure

 Like RCFile, ORCFile is an another basic data placement structure to store and

organize relational data in Hive. ORCFile maintains one file for collections of rows,

which is arranged in a columnar format that allows parallel processing of row collections

in clusters (Prokopp 2014; He et al. 2011). An ORCFile structure has three parts; these

are stripes, footer and postscripts. Figure 13 shows the file structure of ORCFile

(Leverenz 2015).

 Stripes hold the groups of row data and footer maintains a list of stripes in the file,

which contains the information of a number of rows per stripe and column's data type that

includes aggregate functions such as count, min, max and sum. Each stripe size is 256

MB by default, which is good for a sequential read on HDFS. The larger block size

reduces the load of NameNode because the users can read more data from a single

file.The last one is postscripts, which maintains compression parameter and the size of

the compressed footer. The stripes have divided further into three parts, which are index

data, row data and stripe footer. Index data maintains the information of min, max values

and the row positions for each column. These row positions are very efficient to find the

specific compression and decompression blocks by providing the offset of indexes, where

indexes are used to select the stripes and row groups. The row data stores multiple

www.manaraa.com

Hasan 35

streams of per column independently and uses them for table scans. Stripe footer provides

directory services such as encoding types and stream locations.

Figure 13. ORCFile structure.

www.manaraa.com

Hasan 36

5.2.2 Data Write and Compression

 The ORCFile writer does not shrink the tables or whole stripes at a time rather

than it applies data encoding and compression techniques (Huai et al. 2013). To write

data into HDFS, ORC uses memory manager to buffer the whole stripe in memory. Due

to large stripe size, ORCFile uses multiple writers concurrently to write data in a single

MapReduce task, where memory manager controls the memory consumption of writers

(Huai et al. 2014).

 It supports two types of compression techniques. The first one is automatically

used as type-specific encoding methods for columns with various data types and the

second one is optional compression codecs set by users called generic compression. A

column in a stripe can contain multiple streams, where each stream can be divided into

four primitive types. The primitive streams are byte, run length byte, integer, and bit field

streams. Each stream uses the own encoding technique, which depends on streams’ data

types. For example, integer columns data type are serialized into two streams, which are

present bit stream and data stream. For one bit or small integers, the variable length

encoding is used, and for the long data streams of integers, the run length encoding

technique is used. Besides using these type-specific encoding, users can also compress

an ORCFile by general purpose codecs such as ZLIB, Snappy, LZO (Leverenz 2015).

5.2.3 Data Read, Lazy Decompression and Lazy Decoding

 In an ORCFile, the performance of data read is enhanced by lazy decompression

technique (Vagata and Wilfong 2014). Without lazy decompression and lazy decoding, a

query seeks all the stripes to bring out a specific column, which will take a long time to

www.manaraa.com

Hasan 37

finish the MapReduce tasks. This decoding technique is used index stride that already

existed in ORCFile format. The index stride helps the reader to skip unnecessary stripes

and only decompress and decodes the target columns needed by the query. The footer in

the ORCFile has all the stripes that contain the streams location. Thus, the users query

only read the stripe lists to find the appropriate stripe location.

www.manaraa.com

Hasan 38

Chapter 6

Performance Evaluation of RCFile and ORCFile

6.1 Overview

 In this chapter, we have conducted a series of experiments based on different

criteria to measure the efficiency of RCFile and ORCFile format. Our experimental

results will guide to choose the best file format for data placement structure in Hadoop

MapReduce-based warehouse system. For this experiment, first we will introduce the

environment setup, and then present performance results of the above two file formats.

6.2 Experimental Setup

 The effectiveness of distributed systems depends on how one can perform the

read and write operations, where the format of stored data is an important metric for

completing these operations successfully. In this thesis, we choose three aspects to

determine the best file format between RCFile and ORCFile, which are data storage

space, data loading time, and query execution time. For this work, we have configured a

virtual Hadoop cluster in the lab machine, which consists of three nodes. The cluster

works as master-slave architecture, where master node maintains the workspace to

distribute, store and replicate data to slave nodes. Figure 14 shows the system

architecture and network configurations of our experiments. We have installed virtual

box software in each machine to configure Hadoop environment. The operating system in

each virtual box was Ubuntu 14.04.2 LTS 64-bit. The host windows machine has 8 GB

memory with 3 GHz Intel Core i7 CPU, where each node in the virtual box has shared 8

GB memory with 60 GB disk.

www.manaraa.com

Hasan 39

Figure 14. System architecture and network configuration of experiments.

 In our experiments, we have used Hadoop-2.7.1 and for data warehouse, we

choose Hive-1.2.1. We have chosen MapReduce as an execution engine since it is the

default data processing engine used by Hive. The HDFS block size has set to 128 MB,

and the replication factor is three. For these experiments, we have used ~6 GB dataset,

which consists of movie reviews from Amazon. This dataset contains more than 5 million

reviews including eight columns.

 We have divided our experiments into two parts. In one part, we have compared

the RCFile and ORCFile without using any compression algorithm. In the second part,

we have applied compression algorithm (LZ4) to evaluate the performance of both

www.manaraa.com

Hasan 40

RCFile and ORCFile from the perspective of data storage space, data loading and query

execution time. Table 1 shows an example of experimental dataset data type and data

information

Table 1. Details information about data types and example of data set

Column Name Data Type Example Data

Productid String B00006HAXW

Userid String A1G69BQLIUMWPN

Profilename String cassidrm

Helpfulness String 3/4

Score String 5.0

Time String 1200096000

Summary String Good movie

Text String This is a boring

movie, and if your

kids want it, just get it

on a DVD.

www.manaraa.com

Hasan 41

6.3 Performance Analysis

6.3.1 Data Storage Space

 The Data is increasing exponentially, but data storage space does not grow as fast.

Therefore, to store the increasing volume of data with the limited disk space, we need to

use a good data storage format which can organize the data efficiently. We have used

RCFile and ORCFile for data storage format. The downloaded ~6 GB dataset from

Amazon is all in plain text, and first, we loaded it into HDFS directory. Then, we used

data placement structures to load data into the HIVE. Figure 15 shows the storage sizes

with compression. We have used LZ4 compression technique to compress the data using

RCFile and ORCFile. We can see both file format has reduced the data size significantly.

RCFile reduces the data size from ~6 GB to 3.29 GB, where ORCFile reduces even more

than RCFileto 2.01 GB because ORCFile uses larger data blocks than RCFile. Therefore,

each block can arrange more data in column format which allows compressing each

column independently.

 Figure 15. Storage space with compression

www.manaraa.com

Hasan 42

 Figure 16 shows the storage space without compression. Here, we have arranged

the dataset in Hive directory without using any general purpose compression technique.

In this figure, there is not much difference between the Text file and RCFile, but

ORCFile can decrease the file size significantly compare with other file formats because

ORCFile uses a default compression technique (ZLIB). So, the ORCFile provides better

storage efficiency than RCFile, whether using compression technique or not.

Figure 16. Storage space without compression

6.3.2 Data Loading Time

 Data loading time refers to the time to load the raw data into the data warehouse

system. For a data placement structure, data loading is an important factor because data is

generated from multiple sources in real time with great speed. To demonstrate the data

loading time of RCFile and ORCFile, we have conducted experiments with same ~6 GB

dataset. In this case, we have measured both MapReduce time and the total time to finish

www.manaraa.com

Hasan 43

the job. Figure 17 shows the data loading time after compression, where we can see

ORCFile takes more time to load the data than RCFile. We have taken another result

shown in figure 18, which describes the loading time before using compression

technique. We can see in both cases that ORCFiles needed longer loading time than

RCFile. The reason is that ORCFiles have larger block size called stripe, in which each

stripe contains columns that hold the raw data. So, re-organized data in each column in

the stripe takes longer time than RCFile.

Figure 17. Data loading time with compression

www.manaraa.com

Hasan 44

Figure 18. Data loading time without compression

6.3.3 Query Execution Time

 In Big Data analytics the query execution time plays an important role to

determine an efficient data storage format. In this experiments, we have executed four

queries on the movie reviews’ table. The queries are as follow:

• Query 1: select productid from movie_rc;

• Query 2: select reviewsummary from movie_rc where PROFILENAME =

"review/profileName: Jessica Lux" and userid = "review/userId:

A2EBLL2OYEQJN9";

• Query 3: select productid, userid, profilename from movie_rc where SCORE =

"review/score: 50";

• Query 4: select t1.productid, t2.userid from movie_rc t1 right outer join

movie_rc1 t2 on (t1.productid = t2.productid) where t1.profilename =

"review/profileName: Jessica Lux";

www.manaraa.com

Hasan 45

Figure 19 shows the query execution time after data is compressed and Figure 20

shows the query execution time where we do not have used data compression technique.

In both cases, ORCFile outperforms the RCFile significantly because the lazy

decompression technique, which helps the ORCFile to skip a larger block of data if it

does not match a query.

Figure 19. Query execution time with compression

www.manaraa.com

Hasan 46

Figure 20. Query execution time without compression

6.4 RCFile and ORCFile with Different Row Group Sizes

 In all of the above experiments, we have used the default configurations for both

RCFile and ORCFile format. However, input/output performances are one of the major

concerns to get the better result from these data storage format. Therefore, both RCFile

and ORCFile allows the user to set flexible data block sizes because large data block can

have better compression efficiency than a small one, where small data block may have

better read or query performance than a large one. Furthermore, a large data block

consumes more memory and can affect MapReduce tasks. In this experiment, we have

used the same movie review database as above, and size of the dataset is 1.2 GB.

6.4.1 Data Storage Space

 In this section, we have used different row group sizes for RCFile and different

stripe sizes for ORCFile to demonstrate how they affect the storage space. Figure 21

www.manaraa.com

Hasan 47

shows the data storage efficiency of RCFile of different row group sizes (from 512 KB to

48 MB). Figure 22 demonstrate the data storage efficiency of ORCFile of different stripe

sizes (from 4 MB to 256 MB).

Figure 21. RCFile storage space with different row group sizes.

www.manaraa.com

Hasan 48

Figure 22. ORCFile storage space with different stripe sizes.

 We can see that large block sizes have better compression efficiency and reduce

the storage space for both file formats. However, in the RCFile, when the row group size

is larger than 4 MB, the storage space almost constant. In the case of ORCFile shown in

figure 8.8, it gives better compression efficiency, when the stripe sizes are larger than 48

MB. So, the ORCFiles have better storage space with larger data block than RCFile.

6.4.2 Query Execution Time

 Query efficiency is an important factor of Big Data analytics for making quick

decisions. In this experiment, we have evaluated the performance of lazy decompression

technique of both RCFile and ORCFile. Figure 23 and 24 shows the query execution time

www.manaraa.com

Hasan 49

of RCFile and ORCFile. We have designed a query with different characteristics

according to the "where" condition of a query. The query is as follow:

• Query: select reviewsummary from movie_rc where PROFILENAME =

"review/profileName: Jessica Lux";

Figure 23. Query execution times of different data block sizes of RCFile.

Figure 24. Query execution times of different data block sizes of ORCFile.

www.manaraa.com

Hasan 50

 From the above figure, we can see that, when row group sizes are large, RCFile

gives the lower performance of query execution. The ORCFile has the better query

efficiency when data block size is large (256 MB) because the ORCFile can skip large

data block if it does not match the query based on lazy decompression technique.

www.manaraa.com

Hasan 51

Chapter 7

Conclusions and Future Work

 The goals of Big Data analytics in large scale distributed systems are to reduce the

data loading time and storage space as well as enhancing the query performance. Hence,

an efficient data placement structure is an essential factor for organizing data in a proper

way in MapReduce-based data warehousing to meet all the goals of Big Data analytics as

mentioned above. In this research, we have presented two data placement structures, such

as RCFile and ORCFile in Hive and have conducted experiments to compare these two

file formats in three aspects, which are data loading time, storage space, and query

execution time. Our experimental findings showed that both file formats have significant

advantages than an original text file and satisfy the requirements in all three aspects Big

Data analytics. Our experimental results showed that the RCFile have a major inherent

advantage in data loading time over ORCFiles. Since the RCFile has small row-group

size than the ORCFiles, which effectively reduces the data loading time. However, in the

case of storage space and query execution time, the ORCFiles outperform the RCFile.

Though both data placement structures (i.e. RCFile and ORCFile) use column-wise

compression, the large row-group size inside each stripe in ORCFile can hold and

compress more data at a single time and reduces more storage space for ORCFile than

RCFile. We have also observed that ORCFile can skip large numbers of unnecessary

columns during a query, which significantly improves query performance. Thus, the

ORCFiles contain most of the performance benefits features of Big Data analytics, and

we believe that the ORCFile will be the default storage choice for Big Data analytics

soon.

www.manaraa.com

Hasan 52

 Having presented the conclusions of best file format, we can give our attention to

what else will be done in the future. The following areas deserve further study and should

be pursued:

 In this research work, we have used RCFile and ORCFile as data placement structure,

but there are also others file format such as Avro, Parquet, which can be useful data placement

structure for Big Data processing on Hadoop. Also, instead Hive, we can use others data

processing tools on Hadoop such as Pig, Impala.

www.manaraa.com

Hasan 53

References

“Apache Software Framework” 2016. “Hadoop Native Libraries Guide.” Accessed

March 10, 2016. https://hadoop.apache.org/docs/current/hadoop-project-
dist/hadoop-common/NativeLibraries.html.

Asay, Matt. 2014. “Why the World’s Largest Hadoop Installation May Soon Become the

Norm.” Accessed March 9,2016. http://www.techrepublic.com/article/why-the-
worlds-largest-Hadoop-installation-may-soon-become-the-norm/.

Bain.com 2013. “Big Data: The Organizational Challenge.” Accessed March 18, 2016.

http://www.bain.com/publications/articles/big_data_the_organizational_challenge.as
px.

Bertino, Elisa, Philip Bernstein, Divyakant Agrawal, Susan Davidson, Umeshwas Dayal,

Michael Franklin, Johannes Gehrke, et al. 2011. “Challenges and Opportunities with
Big Data.” Cyber Center. Accessed March 8, 2016.
http://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1000&context=cctech.

Borthakur, D. 2008. “HDFS Architecture Guide.” Hadoop Apache Project 1–13.

Accessed March 10, 2016. http://archive.cloudera.com/cdh/3/hadoop-0.20.2-
cdh3u6/hdfs_design.pdf.

Borthakur, Dhruba. 2010. “Facebook Has the World’s Largest Hadoop Cluster!”

Accessed March 17, 2016. http://hadoopblog.blogspot.com/2010/05/facebook-has-
worlds-largest-hadoop.html.

Brough, Graham. 2013. “Big Data, Big Value Huge Opportunity.” Accessed March 20,

2016. http://www.sas.com/en_us/insights/articles/big-data/big-data-big-value-huge-
opportunity.html.

Corrigan, David. 2012. “Big Data: Achieving Competitive Advantage through

Analytics.” Accessed March 15,2016. https://www-
950.ibm.com/events/wwe/grp/grp037.nsf/vLookupPDFs/Calgary_Keynote_%20Dav
id_%20Corrigan%20-%20v1/$file/Calgary_Keynote_%20David_%20Corrigan%20-
%20v1.pdf

Datametica. 2014. “RC/ORC File Format.” Accessed March 10,2016.

http://datametica.com/rcorc-file-format/.

www.manaraa.com

Hasan 54

Davenport, Tom. 2014. “Three Big Benefits of Big Data Analytics.” Accessed March 15,
2016. http://www.sas.com/en_us/news/sascom/2014q3/Big-data-davenport.html.

Dezyre. 2015. “Big-Data-and-Hadoop-Training-Hadoop-Components-and-Architecture.”

Accessed March 17, 2016. https://www.dezyre.com/article/big-data-and-hadoop-
training-hadoop-components-and-architecture/114.

Dobbie, Will, and Roland G. Fryer, Jr. 2013. “Getting Beneath the Veil of Effective

Schools: Evidence from New York City.” American Economic Journal: Applied
Economics 5 (4): 28–60. doi:10.3386/w17632.

Gunelius, Susan. 2014. “The Data Explosion in 2014 Minute by Minute – Infographic.”

Accessed January 20, 2015. http://aci.info/2014/07/12/the-data-explosion-in-2014-
minute-by-minute-infographic/.

Harris, Jim. 2015. “Timeliness Is the Most Important Data Quality Dimension.” Accessed

March 13, 2016. http://www.ocdqblog.com/home/timeliness-is-the-most-important-
data-quality-dimension.html.

“HDFS Architecture.” 2015. Accessed March 18,2016 https: //hadoop.apache.org/doc

s/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html.

He, Yongqiang, Rubao Lee, Yin Huai, Zheng Shao, Namit Jain, Xiaodong Zhang, and

Zhiwei Xu. 2011. “RCFile: A Fast and Space-Efficient Data Placement Structure in
MapReduce-Based Warehouse Systems.” Proceedings - International Conference on
Data Engineering, 1199–1208. doi:10.1109/ICDE.2011.5767933.

Hoovers. 2013. “Big Data and Analytics 101: Secrets to Data Interpretation.” Accessed

March 19, 2016. http://www.hoovers.com/lc/company-information/beginners-guide-
to-data-interpretation.html.

Huai, Yin, Siyuan Ma, Rubao Lee, Owen O’Malley, and Xiaodong Zhang. 2013.

“Understanding Insights into the Basic Structure and Essential Issues of Table
Placement Methods in Clusters.” Proceedings of the VLDB Endowment 6 (14):
1750–61. doi:10.14778/2556549.2556559.

“Internet Live User.” 2014. Accessed January 15, 2016.

http://www.internetlivestats.com/internet-users/.

Issenberg, Sasha. 2012. “How President Obama’s Campaign Used Big Data to Rally

Individual Voters.” Accessed March 10, 2016.
 http://www.technologyreview.com/featuredstory/509026/how-obamas-team-used-

big-data-to-rally-voters/.

www.manaraa.com

Hasan 55

Jain, Abhishek. 2012. “Hadoop - Namenode, DataNode, Job Tracker and TaskTracker.”
Accessed March 10, 2016. http://bigdata.devcodenote.com/2012/11/hadoop-
namenode-datanode-job-tracker.html.

JoshBaer. 2015. “PoweredBy - Hadoop Wiki.” Accessed March 14,2016.
 https://wiki.apache.org/hadoop/PoweredBy.

Khan, Nawsher, Ibrar Yaqoob, Ibrahim Abaker, Targio Hashem, Zakira Inayat, Waleed

Kamaleldin, Mahmoud Ali, Muhammad Alam, Muhammad Shiraz, and Abdullah
Gani. 2014. “Big Data: Survey,Technologies , Opportunities , and Challenges.” The
Scienctific World Journal 2014: 1–18. doi:10.1155/2014/712826.

Kobielus, James. 2014. “Next Best Expert: Collaboration of People and Machines on Big

Data and Analytics.” Accessed March 16,2016.
http://www.ibmbigdatahub.com/blog/next-best-expert-collaboration-people-and-
machines-big-data-and-analytics.

Leverenz, Lefty. 2015. “LanguageManual ORC.” Accessed March 12,2016.

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC#Language
ManualORC-orc-spec.

Murty, Arun. 2012. “Apache Hadoop YARN – Concepts and Applications.” Accessed

March 10,2016. http://hortonworks.com/blog/apache-Hadoop-yarn-concepts-and-
applications/.

NTTDATA. 2015. “Big Data Solutions NTT DATA.” Accessed February 21, 2016.

http://www.nttdata.com/global/en/services/bds/index.html.

Oracle Corporation. 2015. Accessed March 20, 2016. “Oracle Enterprise Architecture

White Paper. An Enterprise Architect’s Guide to Big Data.”

Prokopp, Christian. 2014. “ORC: An Intelligent Big Data File Format for Hadoop and

Hive .” Accessed March 7,2016. http://www.semantikoz.com/blog/orc-intelligent-
big-data-file-format-hadoop-hive/.

Rockwell, Drew. 2015. “ The Big Data Landscape Requires Community, Collaboration -"

Accessed March 5,2016. http://data-informed.com/the-big-data-landscape-requires-
community-collaboration/.

Rutledge, Pamela. 2013. “How Obama Won the Social Media Battle in the 2012
Presidential Campaign.” Accessed March 10,2016.
http://mprcenter.org/blog/2013/01/how-obama-won-the-social-media-battle-in-the-
2012-presidential-campaign/.

SAS. 2015. “What Is Big Data SAS.” Accessed March 21, 2016.

http://www.sas.com/en_us/insights/big-data/what-is-big-data.html.

www.manaraa.com

Hasan 56

Thusoo, Ashish, Js Sarma, and Namit Jain. 2010. “Hive-a Petabyte Scale Data

Warehouse Using Hadoop.” Data Engineering, 996–1005.
doi:10.1109/ICDE.2010.5447738.

Tutorialspoint. 2015a. “Hadoop - Introduction.” Accessed March 2,2016.

http://www.tutorialspoint.com/hadoop/hadoop_introduction.htm.

Tutorialspoint. 2015b. “Hadoop - MapReduce.” Accessed March 2,2016.

http://www.tutorialspoint.com/hadoop/hadoop_mapreduce.htm.

Tutorialspoint. 2015c. “Hive Introduction.” Accessed March 2,2016.

http://www.tutorialspoint.com/hive/hive_introduction.htm.

Vagata, Pamela, and Kevin Wilfong. 2014. “Scaling the Facebook Data Warehouse to

300 PB.” Accessed March 2,2016.
https://code.facebook.com/posts/229861827208629/scaling-the-facebook-data-
warehouse-to-300-
pb/?attachment_canonical_url=https%3A%2F%2Fcode.facebook.com%2Fposts%2
F229861827208629%2Fscaling-the-facebook-data-warehouse-to-300-pb%2F.

Wall, Matthew. 2014. “Big Data: Are You Ready for Blast-Off?” Accessed March

22,2016. http://www.bbc.co.uk/news/business-26383058. Accessed March 10,2016

White, Tom. 2015. Hadoop: The Definitive Guide. Vol. 54. doi:citeulike-article-

id:4882841.

Wikipedia. 2016a. “Apache Hadoop.” Accessed January 11,2016.

https://en.wikipedia.org/wiki/Apache_Hadoop.

Wikipedia. 2016b. “Web 2.0.” Accessed January 18,2016.

https://en.wikipedia.org/wiki/Web_2.0.

Won, Jimmy. 2016. “Which Big Data Company Has the World’s Biggest Hadoop

Cluster?” Accessed January 10. http://www.hadoopwizard.com/which-big-data-
company-has-the-worlds-biggest-Hadoop-cluster/.

Zicari, Roberto V. 2011. “On Big Data: Interview with Shilpa Lawande, VP of

Engineering at Vertica.” Accessed March 12,2016.
http://www.odbms.org/blog/2011/11/on-big-data-interview-with-shilpa-lawande-vp-
of-engineering-at-vertica/.

www.manaraa.com

Hasan 57

Appendices

Appendix A Hadoop Single Node Configuration

Appendix B Hadoop Multi-node Configuration

Appendix C Hive Configuration

Appendix D HiveQL and Table Schema

www.manaraa.com

Hasan 58

Appendix A

Hadoop Single Node Configuration

Step 1: Update System

 Following command will update Ubunto system with the latest set of packages

from all the repositories.

• sudo apt-get update

Step 2: Installing java

 Following command will install the latest version of java JDK.

• sudo apt-get install default-jdk

To check the java version type the following command

• java -version

Step 3: Install the SSH and generate authorized key for password less login

 SSH is required to connect with Hadoop nodes and following command will

install SSH.

• sudo apt-get install ssh

• ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa

• cat ~/.ssh/id_dsa.pub >>~/.ssh/authorized_keys

Step 4: Disable IPV6

 To check if IPV6 address is enable or disable run the following command

• cat /proc/sys/net/ipv6/conf/all/disable_ipv6

 If the output is 0 means enable or if the output is 1 means disable. To disable run

the following command and paste the command.

• sudo gedit /etc/sysctl.conf

 net.ipv6.conf.all.disable_ipv6=1

net.ipv6.conf.default.disable_ipv6=1

net.ipv6.conf.lo.disable_ipv6=1

Step 5: Download and Untar Hadoop-2.7.1

We need to download Hadoop-2.7.1 and save to the disk.

• cd Downloads

www.manaraa.com

Hasan 59

• sudo tar -xvf hadoop-2.7.1.tar.gz

Step 6: Create a directory and move hadoop to that folder and update the java path

variable

• sudo mv hadoop-2.7.1 /usr/local/hadoop

• update-alternatives --config java (Java path is /usr/lib/jvm/java-7-openjdk-amd64)

• sudo gedit hadoop-env.sh

Step 6: Configure the Hadoop variable

 Run the follwing command and type the Hadoop variables to the end of the bash

file

• sudo gedit ~/.bashrc

hadoop variables

export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-amd64

export HADOOP_HOME=/usr/local/hadoop

export PATH=$PATH:$HADOOP_HOME/bin

exportPATH=$PATH:$HADOOP_HOME/sbin

export HADOOP_MAPRED_HOME=$HADOOP_HOME

export HADOOP_COMMON_HOME=$HADOOP_HOME

export HADOOP_HDFS_HOME=$HADOOP_HOME

export YARN_HOME=$HADOOP_HOME

export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native

export HADOOP_OPTS="$HADOOP_OPTS-

Djava.library.path=$HADOOP_HOME/lib/native"

• source ./~bashrc (update the bashrc file)

Step 7: Create name node and data node directory

• sudo mkdir -p /usr/local/hadoop/hadoop_data/hdfs/namenode

• sudo mkdir -p /usr/local/hadoop/hadoop_data/hdfs/datanode

• sudo chown hasan:hasan -R /usr/local/hadoop/

Step 8: Configure the Hadoop directories where the data file stored.

 Type the following command to go the right directory.

• cd /usr/local/hadoop/etc/hadoop

www.manaraa.com

Hasan 60

• sudo gedit mapred-site.xml.template (open file and type the following lines

between configuration tag)

sudo gedit mapred-site.xml

<property>

<name>mapreduce.framework.name</name>

<value>yarn</value>

</property>

• sudo gedit yarn-site.xml(open file and type the following lines between

configuration tag)

<property>

<name>yarn.nodemanager.auxservices</name>

<value>mapreduce_shuffle</value>

<name>yarn.nodemanager.auxservices.mapreduce.shuffle.class</name>

<value>org.apache.hadoop.mapred.shuffleHandler</value>

</property>

• sudo gedit core-site.xml(open file and type the following lines between

configuration tag)

<property>

<name>fs.defaultFS</name>

<value>hdfs://localhost:9000</value>

</property>

• sudo gedit hdfs-site.xml(open file and type the following lines between

configuration tag)

<property>

<name>dfs.replication</name>

<value>1</value>

</property>

<property>

<name>dfs.namenode.name.dir</name>

<value>file:/usr/local/hadoop/hadoop_data/hdfs/namenode</value>

</property>

www.manaraa.com

Hasan 61

<property>

<name>dfs.datanode.name.dir</name>

<value>file:/usr/local/hadoop/hadoop_data/hdfs/datanode</value>

</property>

Step 9: Format name node and start the single node hadoop Hadoop cluster

• hdfs namenode -format

• start-all.sh

• hadoop version

• jps

If everything is successful, then the following services will be appeared:

DataNode

ResourceManager

Jps

NodeManager

NameNode

SecondaryNameNode

At this point Hadoop single node cluster is installed.

www.manaraa.com

Hasan 62

Appendix B

Hadoop Multi-node Configuration

 Step 1: Follow the appendix a procedure to set up single node Hadoop in required

numbers of machine and select a machine for master (name node) and others machines

for slaves (datanode). From master machine, the following command will open a file and

write all the hosts network address and host name.

• sudo gedit /etc/hosts

192.168.0.1 hadoopmaster
192.168.0.2 hadoopslave1
192.168.0.3 hadooplslave2
192.168.0.4 hadooplslave3
192.168.0.5 hadooplslave4

 Step 2: Write the hostname for master machine by typing the following command

• sudo gedit /etc/hostname (open file and put master node name)

 master

 Step 3: Configure the Hadoop directories for multinode cluster. Do the following
changes for all machines (master and slaves).

• sudo gedit mapred-site.xml.template (open file and type the following lines

between configuration tag)

<property>
<name>mapred.job.tracker</name>
<value>hadoopmaster:54311</value>
</property>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>

• sudo gedit yarn-site.xml(open file and type the following lines between

configuration tag)

<property>
<name>yarn.nodemanager.aux-services</name>

www.manaraa.com

Hasan 63

<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.shuffleHandler</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>hadoopmaster:8025</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address</name>
<value> hadoopmaster master:8030</value>
</property>
<property>
<name>yarn.resourcemanager.address</name>
<value> hadoopmaster master:8050</value>
</property>

• sudo gedit core-site.xml(open file and type the following lines between

configuration tag)

<property>

<name>fs.defaultFS</name>

<value>hdfs://hadoopmaster:9000</value>

<description>NameNode URI</description>

</property>

• sudo gedit hdfs-site.xml(open file and type the following lines between

configuration tag)

<property>
<name>dfs.replication</name>
<value>2</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>file:///usr/local/hadoop/hadoop_data/hdfs/datanode</value>
<description>DataNode directory</description>
</property>
<property>
<name>dfs.namenode.name.dir</name>
<value>file:///usr/local/hadoop/hadoop_data/hdfs/namenode</value>
<description>NameNode directory for namespace and transaction logs
storage.</description>

www.manaraa.com

Hasan 64

</property>
<property>
<name>dfs.permissions</name>
<value>false</value>
</property>
<property>
<name>dfs.datanode.use.datanode.hostname</name>
<value>false</value>
</property>
<property>
<name>dfs.namenode.datanode.registration.ip-hostname-check</name>
<value>false</value>
</property>
<property>
 <name>dfs.namenode.http-address</name>
<value>hadoopmaster:50070</value>
<description>Your NameNode hostname for http access.</description>
</property>

 Step 4: From master machine write down the master and slaves machine name or
IP addresses.

• sudo gedit /usr/local/hadoop/etc/hadoop/masters

master or IP address

• sudo gedit /usr/local/hadoop/etc/hadoop/slaves

master
slave1
slave2
slave3

 Step 5: Remove the data node from master machine because master machine work
as a name node. The following command will open the HDFS file and just delete the
portion of data node.

• sudo gedit /usr/local/hadoop/etc/hadoop/hdfs-site.xml

Step 6: From slave machine, give the host name in every slave machine and restart to
make the changes.

• sudogedit /etc/hostname
 hadoopslave1

Step 7: Remove the name node from master machine because slave machines work as a
data node. The following command will open the HDFS file and just delete the portion of
name node.

www.manaraa.com

Hasan 65

• sudo gedit /usr/local/hadoop/etc/hadoop/hdfs-site.xml

Step 8: Delete the Hadoop data directories, what we created in the single node cluster. In
master node, we need to create only name node directory and for slave nodes is data node
directories.

• master machine

• sudo rm -rf /usr/local/hadoop/hadoop_data/

• sudo mkdir -p /usr/local/hadoop/hadoop_data/hdfs/namenode

• sudo chown -R hasan:hasan /usr/local/hadoop

• login slave 1 (do all other slave): (do all other slave)

• sudo rm -rf /usr/local/hadoop/hadoop_data/

• sudo mkdir -p /usr/local/hadoop/hadoop_data/hdfs/datanode

• sudo chown -R hasan:hasan /usr/local/hadoop

Step 8: The following commands will make sure that master machine can login in
password less with slave machines.

ssh-copy-id -i ~/.ssh/id_dsa.pub hasan@192.168.0.1
ssh-copy-id -i ~/.ssh/id_dsa.pub hasan@192.168.0.2
ssh-copy-id -i ~/.ssh/id_dsa.pub hasan@192.168.0.3
ssh-copy-id -i ~/.ssh/id_dsa.pub hasan@192.168.0.4

Step 9: Format name node and start the multi node hadoop Hadoop cluster

• hdfs namenode -format

• start-all.sh

• hadoop version

• jps

If everything is successful, then the following services will be appeared:

DataNode

ResourceManager

Jps

NodeManager

NameNode

SecondaryNameNode

At this point Hadoop multi node cluster is installed.

www.manaraa.com

Hasan 66

Appendix C

Hive Configuration

Step 1: Download the latest version of Hive and the following commands will untar and

move to the Hive folder

• sudo tar -xvf apache-hive-1.1.0-bin.tar.gz

• sudo mv apache-hive-1.1.0-bin /usr/local/hive

Step 2: Configure the Hive directory.

• sudogedit ~/.bashrc (open file and type the following lines at the end of file)

export HIVE_HOME=/usr/local/hive
export HIVE_CONF_DIR=$HIVE_HOME/conf
export HIVE_CLASS_PATH=$HIVE_CONF_DIR
export PATH=$HIVE_HOME/bin:$PATH
export HADOOP_USER_CLASSPATH_FIRST=true

• Update the bashrc file by following command

source ~/.bashrc

Step 3: Copy the Hive jar file Hive library to Hadoop library.

• cp hive-1.2.0/lib/jline-2.12.jar $HADOOP_HOME/share/hadoop/yarn/lib/

Step 4: To start Hive first start Hadoop and the type the following command to start Hive

• hive

At this point Hive is installed in master machine

www.manaraa.com

Hasan 67

Appendix D

HiveQL and Table Schema

Table Creation:

CREATE TABLE MOVIE_TEXT (PRODUCTID STRING,USERID

STRING,PROFILENAME STRING,HELPFULNESS STRING,SCORE STRING,

REVIEWTIME STRING,REVIEWSUMMARY STRING,REVIEWTEXT

STRING)ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';

Load data into table:

load data local inpath '/home/hasan/Desktop/movie.txt' into table movie_text;

Create RC Table:

CREATE TABLE MOVIE_RC(PRODUCTID STRING,USERID

STRING,PROFILENAME STRING,HELPFULNESS STRING,SCORE STRING,

REVIEWTIME STRING,REVIEWSUMMARY STRING,REVIEWTEXT

STRING)STORED AS RCFILE;

Set compression and row group sizes:

setmapred.output.compress=true;

sethive.exec.compress.output=true;

SET hive.io.rcfile.record.buffer.size =512000;

set mapred.output.compression.codec=org.apache.hadoop.io.compress.Lz4Codec;

setio.compression.codecs=org.apache.hadoop.io.compress.Lz4Codec

Load data into RC table:

INSERT OVERWRITE table movie_rc select * from movie_text;

Create ORC Table:

CREATE TABLE MOVIE_ORC(PRODUCTID STRING,USERID

STRING,PROFILENAME STRING,HELPFULNESS STRING,SCORE STRING,

REVIEWTIME STRING,REVIEWSUMMARY STRING,REVIEWTEXT STRING)

STORED AS ORC TBLPROPERTIES "orc.stripe.size"="64000000");

www.manaraa.com

Hasan 68

Set compression and row group sizes:

set hive.exec.orc.compression.strategy= COMPRESSION;

set mapred.output.compress=true;

set hive.exec.compress.output=true;

set mapred.output.compression.codec=org.apache.hadoop.io.compress.Lz4Codec;

Load data into ORC table:

INSERT OVERWRITE table movie_orc select * from movie_text;

	Blank Page

